Convert detectors to factory pattern, ability to set different model for each detector (#4635)

* refactor detectors

* move create_detector and DetectorTypeEnum

* fixed code formatting

* add detector model config models

* fix detector unit tests

* adjust SharedMemory size to largest detector model shape

* fix detector model config defaults

* enable auto-discovery of detectors

* simplify config

* simplify config changes further

* update detectors docs; detect detector configs dynamic

* add suggested changes

* remove custom detector doc

* fix grammar, adjust device defaults
This commit is contained in:
Dennis George
2022-12-15 07:12:52 -06:00
committed by GitHub
parent 43c2761308
commit 420bcd7aa0
15 changed files with 404 additions and 229 deletions

View File

@@ -10,10 +10,8 @@ from abc import ABC, abstractmethod
import numpy as np
from setproctitle import setproctitle
from frigate.config import DetectorTypeEnum, InputTensorEnum
from frigate.detectors.edgetpu_tfl import EdgeTpuTfl
from frigate.detectors.openvino import OvDetector
from frigate.detectors.cpu_tfl import CpuTfl
from frigate.config import InputTensorEnum
from frigate.detectors import create_detector
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen, load_labels
@@ -37,10 +35,7 @@ def tensor_transform(desired_shape):
class LocalObjectDetector(ObjectDetector):
def __init__(
self,
det_type=DetectorTypeEnum.cpu,
det_device=None,
model_config=None,
num_threads=3,
detector_config=None,
labels=None,
):
self.fps = EventsPerSecond()
@@ -49,24 +44,12 @@ class LocalObjectDetector(ObjectDetector):
else:
self.labels = load_labels(labels)
if model_config:
self.input_transform = tensor_transform(model_config.input_tensor)
if detector_config:
self.input_transform = tensor_transform(detector_config.model.input_tensor)
else:
self.input_transform = None
if det_type == DetectorTypeEnum.edgetpu:
self.detect_api = EdgeTpuTfl(
det_device=det_device, model_config=model_config
)
elif det_type == DetectorTypeEnum.openvino:
self.detect_api = OvDetector(
det_device=det_device, model_config=model_config
)
else:
logger.warning(
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
self.detect_api = CpuTfl(model_config=model_config, num_threads=num_threads)
self.detect_api = create_detector(detector_config)
def detect(self, tensor_input, threshold=0.4):
detections = []
@@ -94,10 +77,7 @@ def run_detector(
out_events: dict[str, mp.Event],
avg_speed,
start,
model_config,
det_type,
det_device,
num_threads,
detector_config,
):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
@@ -114,12 +94,7 @@ def run_detector(
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(
det_type=det_type,
det_device=det_device,
model_config=model_config,
num_threads=num_threads,
)
object_detector = LocalObjectDetector(detector_config=detector_config)
outputs = {}
for name in out_events.keys():
@@ -133,7 +108,8 @@ def run_detector(
except queue.Empty:
continue
input_frame = frame_manager.get(
connection_id, (1, model_config.height, model_config.width, 3)
connection_id,
(1, detector_config.model.height, detector_config.model.width, 3),
)
if input_frame is None:
@@ -156,10 +132,7 @@ class ObjectDetectProcess:
name,
detection_queue,
out_events,
model_config,
det_type=None,
det_device=None,
num_threads=3,
detector_config,
):
self.name = name
self.out_events = out_events
@@ -167,10 +140,7 @@ class ObjectDetectProcess:
self.avg_inference_speed = mp.Value("d", 0.01)
self.detection_start = mp.Value("d", 0.0)
self.detect_process = None
self.model_config = model_config
self.det_type = det_type
self.det_device = det_device
self.num_threads = num_threads
self.detector_config = detector_config
self.start_or_restart()
def stop(self):
@@ -195,10 +165,7 @@ class ObjectDetectProcess:
self.out_events,
self.avg_inference_speed,
self.detection_start,
self.model_config,
self.det_type,
self.det_device,
self.num_threads,
self.detector_config,
),
)
self.detect_process.daemon = True