Convert detectors to factory pattern, ability to set different model for each detector (#4635)

* refactor detectors

* move create_detector and DetectorTypeEnum

* fixed code formatting

* add detector model config models

* fix detector unit tests

* adjust SharedMemory size to largest detector model shape

* fix detector model config defaults

* enable auto-discovery of detectors

* simplify config

* simplify config changes further

* update detectors docs; detect detector configs dynamic

* add suggested changes

* remove custom detector doc

* fix grammar, adjust device defaults
This commit is contained in:
Dennis George
2022-12-15 07:12:52 -06:00
committed by GitHub
parent 43c2761308
commit 420bcd7aa0
15 changed files with 404 additions and 229 deletions

View File

@@ -0,0 +1,24 @@
import logging
from .detection_api import DetectionApi
from .detector_config import (
PixelFormatEnum,
InputTensorEnum,
ModelConfig,
)
from .detector_types import DetectorTypeEnum, api_types, DetectorConfig
logger = logging.getLogger(__name__)
def create_detector(detector_config):
if detector_config.type == DetectorTypeEnum.cpu:
logger.warning(
"CPU detectors are not recommended and should only be used for testing or for trial purposes."
)
api = api_types.get(detector_config.type)
if not api:
raise ValueError(detector_config.type)
return api(detector_config)

View File

@@ -1,15 +1,15 @@
import logging
from abc import ABC, abstractmethod
from typing import Dict
logger = logging.getLogger(__name__)
class DetectionApi(ABC):
type_key: str
@abstractmethod
def __init__(self, det_device=None, model_config=None):
def __init__(self, detector_config):
pass
@abstractmethod

View File

@@ -0,0 +1,78 @@
import logging
from enum import Enum
from typing import Dict, List, Optional, Tuple, Union, Literal
import matplotlib.pyplot as plt
from pydantic import BaseModel, Extra, Field, validator
from pydantic.fields import PrivateAttr
from frigate.util import load_labels
logger = logging.getLogger(__name__)
class PixelFormatEnum(str, Enum):
rgb = "rgb"
bgr = "bgr"
yuv = "yuv"
class InputTensorEnum(str, Enum):
nchw = "nchw"
nhwc = "nhwc"
class ModelConfig(BaseModel):
path: Optional[str] = Field(title="Custom Object detection model path.")
labelmap_path: Optional[str] = Field(title="Label map for custom object detector.")
width: int = Field(default=320, title="Object detection model input width.")
height: int = Field(default=320, title="Object detection model input height.")
labelmap: Dict[int, str] = Field(
default_factory=dict, title="Labelmap customization."
)
input_tensor: InputTensorEnum = Field(
default=InputTensorEnum.nhwc, title="Model Input Tensor Shape"
)
input_pixel_format: PixelFormatEnum = Field(
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
)
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
@property
def merged_labelmap(self) -> Dict[int, str]:
return self._merged_labelmap
@property
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
return self._colormap
def __init__(self, **config):
super().__init__(**config)
self._merged_labelmap = {
**load_labels(config.get("labelmap_path", "/labelmap.txt")),
**config.get("labelmap", {}),
}
cmap = plt.cm.get_cmap("tab10", len(self._merged_labelmap.keys()))
self._colormap = {}
for key, val in self._merged_labelmap.items():
self._colormap[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class Config:
extra = Extra.forbid
class BaseDetectorConfig(BaseModel):
# the type field must be defined in all subclasses
type: str = Field(default="cpu", title="Detector Type")
model: ModelConfig = Field(
default=None, title="Detector specific model configuration."
)
class Config:
extra = Extra.allow
arbitrary_types_allowed = True

View File

@@ -0,0 +1,35 @@
import logging
import importlib
import pkgutil
from typing import Union
from typing_extensions import Annotated
from enum import Enum
from pydantic import Field
from . import plugins
from .detection_api import DetectionApi
from .detector_config import BaseDetectorConfig
logger = logging.getLogger(__name__)
plugin_modules = [
importlib.import_module(name)
for finder, name, ispkg in pkgutil.iter_modules(
plugins.__path__, plugins.__name__ + "."
)
]
api_types = {det.type_key: det for det in DetectionApi.__subclasses__()}
class StrEnum(str, Enum):
pass
DetectorTypeEnum = StrEnum("DetectorTypeEnum", {k: k for k in api_types})
DetectorConfig = Annotated[
Union[tuple(BaseDetectorConfig.__subclasses__())],
Field(discriminator="type"),
]

View File

View File

@@ -2,15 +2,29 @@ import logging
import numpy as np
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
import tflite_runtime.interpreter as tflite
logger = logging.getLogger(__name__)
DETECTOR_KEY = "cpu"
class CpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
num_threads: int = Field(default=3, title="Number of detection threads")
class CpuTfl(DetectionApi):
def __init__(self, det_device=None, model_config=None, num_threads=3):
type_key = DETECTOR_KEY
def __init__(self, detector_config: CpuDetectorConfig):
self.interpreter = tflite.Interpreter(
model_path=model_config.path or "/cpu_model.tflite", num_threads=num_threads
model_path=detector_config.model.path or "/cpu_model.tflite",
num_threads=detector_config.num_threads or 3,
)
self.interpreter.allocate_tensors()

View File

@@ -2,17 +2,30 @@ import logging
import numpy as np
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
logger = logging.getLogger(__name__)
DETECTOR_KEY = "edgetpu"
class EdgeTpuDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class EdgeTpuTfl(DetectionApi):
def __init__(self, det_device=None, model_config=None):
type_key = DETECTOR_KEY
def __init__(self, detector_config: EdgeTpuDetectorConfig):
device_config = {"device": "usb"}
if not det_device is None:
device_config = {"device": det_device}
if detector_config.device is not None:
device_config = {"device": detector_config.device}
edge_tpu_delegate = None
@@ -21,7 +34,7 @@ class EdgeTpuTfl(DetectionApi):
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
logger.info("TPU found")
self.interpreter = tflite.Interpreter(
model_path=model_config.path or "/edgetpu_model.tflite",
model_path=detector_config.model.path or "/edgetpu_model.tflite",
experimental_delegates=[edge_tpu_delegate],
)
except ValueError:

View File

@@ -3,18 +3,30 @@ import numpy as np
import openvino.runtime as ov
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from typing import Literal
from pydantic import Extra, Field
logger = logging.getLogger(__name__)
DETECTOR_KEY = "openvino"
class OvDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default=None, title="Device Type")
class OvDetector(DetectionApi):
def __init__(self, det_device=None, model_config=None, num_threads=1):
type_key = DETECTOR_KEY
def __init__(self, detector_config: OvDetectorConfig):
self.ov_core = ov.Core()
self.ov_model = self.ov_core.read_model(model_config.path)
self.ov_model = self.ov_core.read_model(detector_config.model.path)
self.interpreter = self.ov_core.compile_model(
model=self.ov_model, device_name=det_device
model=self.ov_model, device_name=detector_config.device
)
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
self.output_indexes = 0