forked from Github/frigate
refactor resizing into generic priority queues
This commit is contained in:
@@ -27,6 +27,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
# print(self.engine.get_inference_time())
|
||||
|
||||
# parse and pass detected objects back to the camera
|
||||
# TODO: just send this back with all the same info you received and objects as a new property
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
parsed_objects.append({
|
||||
@@ -92,3 +93,67 @@ class FramePrepper(threading.Thread):
|
||||
})
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.camera.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
|
||||
self.camera.frame_ready.wait()
|
||||
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
# queue with priority 1
|
||||
self.camera.resize_queue.put((1, {
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
}))
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
||||
frame = self.frame_cache.get(resize_request['frame_time'], None)
|
||||
|
||||
if frame is None:
|
||||
print("RegionPrepper: frame_time not in frame_cache")
|
||||
continue
|
||||
|
||||
# make a copy of the region
|
||||
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
# add to queue with priority 1
|
||||
self.prepped_frame_queue.put((1, resize_request))
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
Reference in New Issue
Block a user