This commit is contained in:
John Vandenberg
2024-02-18 06:01:50 +08:00
committed by GitHub
parent 617c728a88
commit 3cff3a086b
13 changed files with 23 additions and 24 deletions

View File

@@ -13,7 +13,7 @@ The CPU detector type runs a TensorFlow Lite model utilizing the CPU without har
:::tip
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
:::
@@ -204,7 +204,7 @@ model:
### Intel NCS2 VPU and Myriad X Setup
Intel produces a neural net inference accelleration chip called Myriad X. This chip was sold in their Neural Compute Stick 2 (NCS2) which has been discontinued. If intending to use the MYRIAD device for accelleration, additional setup is required to pass through the USB device. The host needs a udev rule installed to handle the NCS2 device.
Intel produces a neural net inference acceleration chip called Myriad X. This chip was sold in their Neural Compute Stick 2 (NCS2) which has been discontinued. If intending to use the MYRIAD device for acceleration, additional setup is required to pass through the USB device. The host needs a udev rule installed to handle the NCS2 device.
```bash
sudo usermod -a -G users "$(whoami)"
@@ -403,7 +403,7 @@ model: # required
Explanation for rknn specific options:
- **core mask** controls which cores of your NPU should be used. This option applies only to SoCs with a multicore NPU (at the time of writing this in only the RK3588/S). The easiest way is to pass the value as a binary number. To do so, use the prefix `0b` and write a `0` to disable a core and a `1` to enable a core, whereas the last digit coresponds to core0, the second last to core1, etc. You also have to use the cores in ascending order (so you can't use core0 and core2; but you can use core0 and core1). Enabling more cores can reduce the inference speed, especially when using bigger models (see section below). Examples:
- **core mask** controls which cores of your NPU should be used. This option applies only to SoCs with a multicore NPU (at the time of writing this in only the RK3588/S). The easiest way is to pass the value as a binary number. To do so, use the prefix `0b` and write a `0` to disable a core and a `1` to enable a core, whereas the last digit corresponds to core0, the second last to core1, etc. You also have to use the cores in ascending order (so you can't use core0 and core2; but you can use core0 and core1). Enabling more cores can reduce the inference speed, especially when using bigger models (see section below). Examples:
- `core_mask: 0b000` or just `core_mask: 0` let the NPU decide which cores should be used. Default and recommended value.
- `core_mask: 0b001` use only core0.
- `core_mask: 0b011` use core0 and core1.
@@ -608,5 +608,4 @@ Other settings available for the rocm detector
### Expected performance
On an AMD Ryzen 3 5400U with integrated GPU (gfx90c) the yolov8n runs in around 9ms per image (about 110 detections per second) and 18ms (55 detections per second) for yolov8s (at 320x320 detector resolution).
On an AMD Ryzen 3 5400U with integrated GPU (gfx90c) the yolov8n runs in around 9ms per image (about 110 detections per second) and 18ms (55 detections per second) for yolov8s (at 320x320 detector resolution).