forked from Github/frigate
formatting cleanup
This commit is contained in:
360
frigate/video.py
360
frigate/video.py
@@ -1,12 +1,7 @@
|
||||
import base64
|
||||
import copy
|
||||
import ctypes
|
||||
import datetime
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import subprocess as sp
|
||||
import signal
|
||||
@@ -16,7 +11,7 @@ from collections import defaultdict
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict, List
|
||||
|
||||
import cv2
|
||||
from cv2 import cv2
|
||||
import numpy as np
|
||||
|
||||
from frigate.config import CameraConfig
|
||||
@@ -24,19 +19,25 @@ from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.util import (EventsPerSecond, FrameManager,
|
||||
SharedMemoryFrameManager, area, calculate_region,
|
||||
clipped, draw_box_with_label, intersection,
|
||||
intersection_over_union, listen, yuv_region_2_rgb)
|
||||
from frigate.util import (
|
||||
EventsPerSecond,
|
||||
FrameManager,
|
||||
SharedMemoryFrameManager,
|
||||
calculate_region,
|
||||
clipped,
|
||||
listen,
|
||||
yuv_region_2_rgb,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters):
|
||||
object_name = obj[0]
|
||||
|
||||
if not object_name in objects_to_track:
|
||||
return True
|
||||
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
@@ -44,7 +45,7 @@ def filtered(obj, objects_to_track, object_filters):
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.min_area > obj[3]:
|
||||
return True
|
||||
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.max_area < obj[3]:
|
||||
@@ -53,29 +54,36 @@ def filtered(obj, objects_to_track, object_filters):
|
||||
# if the score is lower than the min_score, skip
|
||||
if obj_settings.min_score > obj[1]:
|
||||
return True
|
||||
|
||||
|
||||
if not obj_settings.mask is None:
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(obj_settings.mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(obj_settings.mask[0])-1)
|
||||
y_location = min(int(obj[2][3]), len(obj_settings.mask) - 1)
|
||||
x_location = min(
|
||||
int((obj[2][2] - obj[2][0]) / 2.0) + obj[2][0],
|
||||
len(obj_settings.mask[0]) - 1,
|
||||
)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if obj_settings.mask[y_location][x_location] == 0:
|
||||
return True
|
||||
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def create_tensor_input(frame, model_shape, region):
|
||||
cropped_frame = yuv_region_2_rgb(frame, region)
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
cropped_frame = cv2.resize(
|
||||
cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR
|
||||
)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
|
||||
def stop_ffmpeg(ffmpeg_process, logger):
|
||||
logger.info("Terminating the existing ffmpeg process...")
|
||||
ffmpeg_process.terminate()
|
||||
@@ -88,18 +96,43 @@ def stop_ffmpeg(ffmpeg_process, logger):
|
||||
ffmpeg_process.communicate()
|
||||
ffmpeg_process = None
|
||||
|
||||
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
|
||||
|
||||
def start_or_restart_ffmpeg(
|
||||
ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None
|
||||
):
|
||||
if not ffmpeg_process is None:
|
||||
stop_ffmpeg(ffmpeg_process, logger)
|
||||
|
||||
if frame_size is None:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
|
||||
process = sp.Popen(
|
||||
ffmpeg_cmd,
|
||||
stdout=sp.DEVNULL,
|
||||
stderr=logpipe,
|
||||
stdin=sp.DEVNULL,
|
||||
start_new_session=True,
|
||||
)
|
||||
else:
|
||||
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
|
||||
process = sp.Popen(
|
||||
ffmpeg_cmd,
|
||||
stdout=sp.PIPE,
|
||||
stderr=logpipe,
|
||||
stdin=sp.DEVNULL,
|
||||
bufsize=frame_size * 10,
|
||||
start_new_session=True,
|
||||
)
|
||||
return process
|
||||
|
||||
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
|
||||
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
|
||||
|
||||
def capture_frames(
|
||||
ffmpeg_process,
|
||||
camera_name,
|
||||
frame_shape,
|
||||
frame_manager: FrameManager,
|
||||
frame_queue,
|
||||
fps: mp.Value,
|
||||
skipped_fps: mp.Value,
|
||||
current_frame: mp.Value,
|
||||
):
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1]
|
||||
frame_rate = EventsPerSecond()
|
||||
@@ -119,7 +152,9 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
|
||||
|
||||
if ffmpeg_process.poll() != None:
|
||||
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
|
||||
logger.info(
|
||||
f"{camera_name}: ffmpeg process is not running. exiting capture thread..."
|
||||
)
|
||||
frame_manager.delete(frame_name)
|
||||
break
|
||||
continue
|
||||
@@ -138,8 +173,11 @@ def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: Fram
|
||||
# add to the queue
|
||||
frame_queue.put(current_frame.value)
|
||||
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
|
||||
def __init__(
|
||||
self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event
|
||||
):
|
||||
threading.Thread.__init__(self)
|
||||
self.logger = logging.getLogger(f"watchdog.{camera_name}")
|
||||
self.camera_name = camera_name
|
||||
@@ -159,22 +197,27 @@ class CameraWatchdog(threading.Thread):
|
||||
self.start_ffmpeg_detect()
|
||||
|
||||
for c in self.config.ffmpeg_cmds:
|
||||
if 'detect' in c['roles']:
|
||||
if "detect" in c["roles"]:
|
||||
continue
|
||||
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
|
||||
self.ffmpeg_other_processes.append({
|
||||
'cmd': c['cmd'],
|
||||
'logpipe': logpipe,
|
||||
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
|
||||
})
|
||||
|
||||
logpipe = LogPipe(
|
||||
f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}",
|
||||
logging.ERROR,
|
||||
)
|
||||
self.ffmpeg_other_processes.append(
|
||||
{
|
||||
"cmd": c["cmd"],
|
||||
"logpipe": logpipe,
|
||||
"process": start_or_restart_ffmpeg(c["cmd"], self.logger, logpipe),
|
||||
}
|
||||
)
|
||||
|
||||
time.sleep(10)
|
||||
while True:
|
||||
if self.stop_event.is_set():
|
||||
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
|
||||
for p in self.ffmpeg_other_processes:
|
||||
stop_ffmpeg(p['process'], self.logger)
|
||||
p['logpipe'].close()
|
||||
stop_ffmpeg(p["process"], self.logger)
|
||||
p["logpipe"].close()
|
||||
self.logpipe.close()
|
||||
break
|
||||
|
||||
@@ -184,7 +227,9 @@ class CameraWatchdog(threading.Thread):
|
||||
self.logpipe.dump()
|
||||
self.start_ffmpeg_detect()
|
||||
elif now - self.capture_thread.current_frame.value > 20:
|
||||
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
|
||||
self.logger.info(
|
||||
f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg..."
|
||||
)
|
||||
self.ffmpeg_detect_process.terminate()
|
||||
try:
|
||||
self.logger.info("Waiting for ffmpeg to exit gracefully...")
|
||||
@@ -193,25 +238,37 @@ class CameraWatchdog(threading.Thread):
|
||||
self.logger.info("FFmpeg didnt exit. Force killing...")
|
||||
self.ffmpeg_detect_process.kill()
|
||||
self.ffmpeg_detect_process.communicate()
|
||||
|
||||
|
||||
for p in self.ffmpeg_other_processes:
|
||||
poll = p['process'].poll()
|
||||
poll = p["process"].poll()
|
||||
if poll == None:
|
||||
continue
|
||||
p['logpipe'].dump()
|
||||
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
|
||||
|
||||
p["logpipe"].dump()
|
||||
p["process"] = start_or_restart_ffmpeg(
|
||||
p["cmd"], self.logger, p["logpipe"], ffmpeg_process=p["process"]
|
||||
)
|
||||
|
||||
# wait a bit before checking again
|
||||
time.sleep(10)
|
||||
|
||||
|
||||
def start_ffmpeg_detect(self):
|
||||
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
|
||||
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
|
||||
ffmpeg_cmd = [
|
||||
c["cmd"] for c in self.config.ffmpeg_cmds if "detect" in c["roles"]
|
||||
][0]
|
||||
self.ffmpeg_detect_process = start_or_restart_ffmpeg(
|
||||
ffmpeg_cmd, self.logger, self.logpipe, self.frame_size
|
||||
)
|
||||
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
|
||||
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
|
||||
self.camera_fps)
|
||||
self.capture_thread = CameraCapture(
|
||||
self.camera_name,
|
||||
self.ffmpeg_detect_process,
|
||||
self.frame_shape,
|
||||
self.frame_queue,
|
||||
self.camera_fps,
|
||||
)
|
||||
self.capture_thread.start()
|
||||
|
||||
|
||||
class CameraCapture(threading.Thread):
|
||||
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
|
||||
threading.Thread.__init__(self)
|
||||
@@ -223,32 +280,59 @@ class CameraCapture(threading.Thread):
|
||||
self.skipped_fps = EventsPerSecond()
|
||||
self.frame_manager = SharedMemoryFrameManager()
|
||||
self.ffmpeg_process = ffmpeg_process
|
||||
self.current_frame = mp.Value('d', 0.0)
|
||||
self.current_frame = mp.Value("d", 0.0)
|
||||
self.last_frame = 0
|
||||
|
||||
def run(self):
|
||||
self.skipped_fps.start()
|
||||
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
|
||||
self.fps, self.skipped_fps, self.current_frame)
|
||||
capture_frames(
|
||||
self.ffmpeg_process,
|
||||
self.camera_name,
|
||||
self.frame_shape,
|
||||
self.frame_manager,
|
||||
self.frame_queue,
|
||||
self.fps,
|
||||
self.skipped_fps,
|
||||
self.current_frame,
|
||||
)
|
||||
|
||||
|
||||
def capture_camera(name, config: CameraConfig, process_info):
|
||||
stop_event = mp.Event()
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
frame_queue = process_info['frame_queue']
|
||||
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
|
||||
frame_queue = process_info["frame_queue"]
|
||||
camera_watchdog = CameraWatchdog(
|
||||
name,
|
||||
config,
|
||||
frame_queue,
|
||||
process_info["camera_fps"],
|
||||
process_info["ffmpeg_pid"],
|
||||
stop_event,
|
||||
)
|
||||
camera_watchdog.start()
|
||||
camera_watchdog.join()
|
||||
|
||||
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
|
||||
|
||||
def track_camera(
|
||||
name,
|
||||
config: CameraConfig,
|
||||
model_shape,
|
||||
detection_queue,
|
||||
result_connection,
|
||||
detected_objects_queue,
|
||||
process_info,
|
||||
):
|
||||
stop_event = mp.Event()
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
@@ -256,71 +340,113 @@ def track_camera(name, config: CameraConfig, model_shape, detection_queue, resul
|
||||
setproctitle(f"frigate.process:{name}")
|
||||
listen()
|
||||
|
||||
frame_queue = process_info['frame_queue']
|
||||
detection_enabled = process_info['detection_enabled']
|
||||
frame_queue = process_info["frame_queue"]
|
||||
detection_enabled = process_info["detection_enabled"]
|
||||
|
||||
frame_shape = config.frame_shape
|
||||
objects_to_track = config.objects.track
|
||||
object_filters = config.objects.filters
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, config.motion)
|
||||
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
|
||||
object_detector = RemoteObjectDetector(
|
||||
name, "/labelmap.txt", detection_queue, result_connection, model_shape
|
||||
)
|
||||
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
|
||||
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, detection_enabled, stop_event)
|
||||
process_frames(
|
||||
name,
|
||||
frame_queue,
|
||||
frame_shape,
|
||||
model_shape,
|
||||
frame_manager,
|
||||
motion_detector,
|
||||
object_detector,
|
||||
object_tracker,
|
||||
detected_objects_queue,
|
||||
process_info,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
detection_enabled,
|
||||
stop_event,
|
||||
)
|
||||
|
||||
logger.info(f"{name}: exiting subprocess")
|
||||
|
||||
|
||||
def reduce_boxes(boxes):
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
|
||||
reduced_boxes = cv2.groupRectangles(
|
||||
[list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2
|
||||
)[0]
|
||||
return [tuple(b) for b in reduced_boxes]
|
||||
|
||||
|
||||
# modified from https://stackoverflow.com/a/40795835
|
||||
def intersects_any(box_a, boxes):
|
||||
for box in boxes:
|
||||
if box_a[2] < box[0] or box_a[0] > box[2] or box_a[1] > box[3] or box_a[3] < box[1]:
|
||||
if (
|
||||
box_a[2] < box[0]
|
||||
or box_a[0] > box[2]
|
||||
or box_a[1] > box[3]
|
||||
or box_a[3] < box[1]
|
||||
):
|
||||
continue
|
||||
return True
|
||||
|
||||
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters):
|
||||
|
||||
def detect(
|
||||
object_detector, frame, model_shape, region, objects_to_track, object_filters
|
||||
):
|
||||
tensor_input = create_tensor_input(frame, model_shape, region)
|
||||
|
||||
detections = []
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
for d in region_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
size = region[2] - region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
det = (
|
||||
d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
(x_max - x_min) * (y_max - y_min),
|
||||
region,
|
||||
)
|
||||
# apply object filters
|
||||
if filtered(det, objects_to_track, object_filters):
|
||||
continue
|
||||
detections.append(det)
|
||||
return detections
|
||||
|
||||
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
|
||||
frame_manager: FrameManager, motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue, process_info: Dict,
|
||||
objects_to_track: List[str], object_filters, detection_enabled: mp.Value, stop_event,
|
||||
exit_on_empty: bool = False):
|
||||
|
||||
fps = process_info['process_fps']
|
||||
detection_fps = process_info['detection_fps']
|
||||
current_frame_time = process_info['detection_frame']
|
||||
|
||||
def process_frames(
|
||||
camera_name: str,
|
||||
frame_queue: mp.Queue,
|
||||
frame_shape,
|
||||
model_shape,
|
||||
frame_manager: FrameManager,
|
||||
motion_detector: MotionDetector,
|
||||
object_detector: RemoteObjectDetector,
|
||||
object_tracker: ObjectTracker,
|
||||
detected_objects_queue: mp.Queue,
|
||||
process_info: Dict,
|
||||
objects_to_track: List[str],
|
||||
object_filters,
|
||||
detection_enabled: mp.Value,
|
||||
stop_event,
|
||||
exit_on_empty: bool = False,
|
||||
):
|
||||
|
||||
fps = process_info["process_fps"]
|
||||
detection_fps = process_info["detection_fps"]
|
||||
current_frame_time = process_info["detection_frame"]
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
@@ -340,7 +466,9 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
|
||||
current_frame_time.value = frame_time
|
||||
|
||||
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
|
||||
frame = frame_manager.get(
|
||||
f"{camera_name}{frame_time}", (frame_shape[0] * 3 // 2, frame_shape[1])
|
||||
)
|
||||
|
||||
if frame is None:
|
||||
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
||||
@@ -349,7 +477,9 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
if not detection_enabled.value:
|
||||
fps.value = fps_tracker.eps()
|
||||
object_tracker.match_and_update(frame_time, [])
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, [], []))
|
||||
detected_objects_queue.put(
|
||||
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
|
||||
)
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
@@ -358,27 +488,44 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
# only get the tracked object boxes that intersect with motion
|
||||
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values() if intersects_any(obj['box'], motion_boxes)]
|
||||
tracked_object_boxes = [
|
||||
obj["box"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if intersects_any(obj["box"], motion_boxes)
|
||||
]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
|
||||
# compute regions
|
||||
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||
for a in combined_boxes]
|
||||
regions = [
|
||||
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||
for a in combined_boxes
|
||||
]
|
||||
|
||||
# combine overlapping regions
|
||||
combined_regions = reduce_boxes(regions)
|
||||
|
||||
# re-compute regions
|
||||
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
|
||||
for a in combined_regions]
|
||||
regions = [
|
||||
calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
|
||||
for a in combined_regions
|
||||
]
|
||||
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in regions:
|
||||
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
detections.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
#########
|
||||
@@ -396,8 +543,10 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
||||
for o in group]
|
||||
boxes = [
|
||||
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
@@ -406,17 +555,26 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
region = calculate_region(
|
||||
frame_shape, box[0], box[1], box[2], box[3]
|
||||
)
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters))
|
||||
|
||||
selected_objects.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
selected_objects.append(obj)
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
@@ -426,18 +584,28 @@ def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_s
|
||||
|
||||
# Limit to the detections overlapping with motion areas
|
||||
# to avoid picking up stationary background objects
|
||||
detections_with_motion = [d for d in detections if intersects_any(d[2], motion_boxes)]
|
||||
detections_with_motion = [
|
||||
d for d in detections if intersects_any(d[2], motion_boxes)
|
||||
]
|
||||
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, detections_with_motion)
|
||||
|
||||
# add to the queue if not full
|
||||
if(detected_objects_queue.full()):
|
||||
if detected_objects_queue.full():
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
else:
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
|
||||
detected_objects_queue.put(
|
||||
(
|
||||
camera_name,
|
||||
frame_time,
|
||||
object_tracker.tracked_objects,
|
||||
motion_boxes,
|
||||
regions,
|
||||
)
|
||||
)
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
|
||||
Reference in New Issue
Block a user