forked from Github/frigate
formatting cleanup
This commit is contained in:
@@ -1,48 +1,49 @@
|
||||
import datetime
|
||||
import hashlib
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import queue
|
||||
import threading
|
||||
import signal
|
||||
import threading
|
||||
from abc import ABC, abstractmethod
|
||||
from multiprocessing.connection import Connection
|
||||
from setproctitle import setproctitle
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from setproctitle import setproctitle
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
|
||||
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
encoding: label file encoding.
|
||||
Returns:
|
||||
Dictionary mapping indices to labels.
|
||||
"""
|
||||
with open(path, 'r', encoding=encoding) as f:
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||
return {int(index): label.strip() for index, label in pairs}
|
||||
else:
|
||||
return {index: line.strip() for index, line in enumerate(lines)}
|
||||
def load_labels(path, encoding="utf-8"):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
Args:
|
||||
path: path to label file.
|
||||
encoding: label file encoding.
|
||||
Returns:
|
||||
Dictionary mapping indices to labels.
|
||||
"""
|
||||
with open(path, "r", encoding=encoding) as f:
|
||||
lines = f.readlines()
|
||||
if not lines:
|
||||
return {}
|
||||
|
||||
if lines[0].split(" ", maxsplit=1)[0].isdigit():
|
||||
pairs = [line.split(" ", maxsplit=1) for line in lines]
|
||||
return {int(index): label.strip() for index, label in pairs}
|
||||
else:
|
||||
return {index: line.strip() for index, line in enumerate(lines)}
|
||||
|
||||
|
||||
class ObjectDetector(ABC):
|
||||
@abstractmethod
|
||||
def detect(self, tensor_input, threshold = .4):
|
||||
def detect(self, tensor_input, threshold=0.4):
|
||||
pass
|
||||
|
||||
|
||||
class LocalObjectDetector(ObjectDetector):
|
||||
def __init__(self, tf_device=None, num_threads=3, labels=None):
|
||||
self.fps = EventsPerSecond()
|
||||
@@ -57,27 +58,29 @@ class LocalObjectDetector(ObjectDetector):
|
||||
|
||||
edge_tpu_delegate = None
|
||||
|
||||
if tf_device != 'cpu':
|
||||
if tf_device != "cpu":
|
||||
try:
|
||||
logger.info(f"Attempting to load TPU as {device_config['device']}")
|
||||
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
|
||||
edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
|
||||
logger.info("TPU found")
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/edgetpu_model.tflite',
|
||||
experimental_delegates=[edge_tpu_delegate])
|
||||
model_path="/edgetpu_model.tflite",
|
||||
experimental_delegates=[edge_tpu_delegate],
|
||||
)
|
||||
except ValueError:
|
||||
logger.info("No EdgeTPU detected.")
|
||||
raise
|
||||
else:
|
||||
self.interpreter = tflite.Interpreter(
|
||||
model_path='/cpu_model.tflite', num_threads=num_threads)
|
||||
|
||||
model_path="/cpu_model.tflite", num_threads=num_threads
|
||||
)
|
||||
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
|
||||
def detect(self, tensor_input, threshold=0.4):
|
||||
detections = []
|
||||
|
||||
raw_detections = self.detect_raw(tensor_input)
|
||||
@@ -85,28 +88,49 @@ class LocalObjectDetector(ObjectDetector):
|
||||
for d in raw_detections:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
detections.append(
|
||||
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
)
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||
self.interpreter.invoke()
|
||||
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||
boxes = np.squeeze(
|
||||
self.interpreter.get_tensor(self.tensor_output_details[0]["index"])
|
||||
)
|
||||
label_codes = np.squeeze(
|
||||
self.interpreter.get_tensor(self.tensor_output_details[1]["index"])
|
||||
)
|
||||
scores = np.squeeze(
|
||||
self.interpreter.get_tensor(self.tensor_output_details[2]["index"])
|
||||
)
|
||||
|
||||
detections = np.zeros((20,6), np.float32)
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
for i, score in enumerate(scores):
|
||||
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||
|
||||
detections[i] = [
|
||||
label_codes[i],
|
||||
score,
|
||||
boxes[i][0],
|
||||
boxes[i][1],
|
||||
boxes[i][2],
|
||||
boxes[i][3],
|
||||
]
|
||||
|
||||
return detections
|
||||
|
||||
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
|
||||
|
||||
def run_detector(
|
||||
name: str,
|
||||
detection_queue: mp.Queue,
|
||||
out_events: Dict[str, mp.Event],
|
||||
avg_speed,
|
||||
start,
|
||||
model_shape,
|
||||
tf_device,
|
||||
num_threads,
|
||||
):
|
||||
threading.current_thread().name = f"detector:{name}"
|
||||
logger = logging.getLogger(f"detector.{name}")
|
||||
logger.info(f"Starting detection process: {os.getpid()}")
|
||||
@@ -114,9 +138,10 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
listen()
|
||||
|
||||
stop_event = mp.Event()
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
stop_event.set()
|
||||
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
signal.signal(signal.SIGINT, receiveSignal)
|
||||
|
||||
@@ -126,12 +151,9 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
outputs = {}
|
||||
for name in out_events.keys():
|
||||
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
|
||||
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
|
||||
outputs[name] = {
|
||||
'shm': out_shm,
|
||||
'np': out_np
|
||||
}
|
||||
|
||||
out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
|
||||
outputs[name] = {"shm": out_shm, "np": out_np}
|
||||
|
||||
while True:
|
||||
if stop_event.is_set():
|
||||
break
|
||||
@@ -140,7 +162,9 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
connection_id = detection_queue.get(timeout=5)
|
||||
except queue.Empty:
|
||||
continue
|
||||
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
|
||||
input_frame = frame_manager.get(
|
||||
connection_id, (1, model_shape[0], model_shape[1], 3)
|
||||
)
|
||||
|
||||
if input_frame is None:
|
||||
continue
|
||||
@@ -148,26 +172,35 @@ def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.
|
||||
# detect and send the output
|
||||
start.value = datetime.datetime.now().timestamp()
|
||||
detections = object_detector.detect_raw(input_frame)
|
||||
duration = datetime.datetime.now().timestamp()-start.value
|
||||
outputs[connection_id]['np'][:] = detections[:]
|
||||
duration = datetime.datetime.now().timestamp() - start.value
|
||||
outputs[connection_id]["np"][:] = detections[:]
|
||||
out_events[connection_id].set()
|
||||
start.value = 0.0
|
||||
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
|
||||
avg_speed.value = (avg_speed.value * 9 + duration) / 10
|
||||
|
||||
|
||||
class EdgeTPUProcess:
|
||||
def __init__(
|
||||
self,
|
||||
name,
|
||||
detection_queue,
|
||||
out_events,
|
||||
model_shape,
|
||||
tf_device=None,
|
||||
num_threads=3,
|
||||
):
|
||||
self.name = name
|
||||
self.out_events = out_events
|
||||
self.detection_queue = detection_queue
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
self.detection_start = mp.Value('d', 0.0)
|
||||
self.avg_inference_speed = mp.Value("d", 0.01)
|
||||
self.detection_start = mp.Value("d", 0.0)
|
||||
self.detect_process = None
|
||||
self.model_shape = model_shape
|
||||
self.tf_device = tf_device
|
||||
self.num_threads = num_threads
|
||||
self.start_or_restart()
|
||||
|
||||
|
||||
def stop(self):
|
||||
self.detect_process.terminate()
|
||||
logging.info("Waiting for detection process to exit gracefully...")
|
||||
@@ -181,11 +214,25 @@ class EdgeTPUProcess():
|
||||
self.detection_start.value = 0.0
|
||||
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||
self.stop()
|
||||
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
|
||||
self.detect_process = mp.Process(
|
||||
target=run_detector,
|
||||
name=f"detector:{self.name}",
|
||||
args=(
|
||||
self.name,
|
||||
self.detection_queue,
|
||||
self.out_events,
|
||||
self.avg_inference_speed,
|
||||
self.detection_start,
|
||||
self.model_shape,
|
||||
self.tf_device,
|
||||
self.num_threads,
|
||||
),
|
||||
)
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
class RemoteObjectDetector():
|
||||
|
||||
class RemoteObjectDetector:
|
||||
def __init__(self, name, labels, detection_queue, event, model_shape):
|
||||
self.labels = load_labels(labels)
|
||||
self.name = name
|
||||
@@ -193,11 +240,15 @@ class RemoteObjectDetector():
|
||||
self.detection_queue = detection_queue
|
||||
self.event = event
|
||||
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
|
||||
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
|
||||
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
|
||||
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
|
||||
|
||||
def detect(self, tensor_input, threshold=.4):
|
||||
self.np_shm = np.ndarray(
|
||||
(1, model_shape[0], model_shape[1], 3), dtype=np.uint8, buffer=self.shm.buf
|
||||
)
|
||||
self.out_shm = mp.shared_memory.SharedMemory(
|
||||
name=f"out-{self.name}", create=False
|
||||
)
|
||||
self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
|
||||
|
||||
def detect(self, tensor_input, threshold=0.4):
|
||||
detections = []
|
||||
|
||||
# copy input to shared memory
|
||||
@@ -213,14 +264,12 @@ class RemoteObjectDetector():
|
||||
for d in self.out_np_shm:
|
||||
if d[1] < threshold:
|
||||
break
|
||||
detections.append((
|
||||
self.labels[int(d[0])],
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
detections.append(
|
||||
(self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
|
||||
)
|
||||
self.fps.update()
|
||||
return detections
|
||||
|
||||
|
||||
def cleanup(self):
|
||||
self.shm.unlink()
|
||||
self.out_shm.unlink()
|
||||
|
||||
Reference in New Issue
Block a user