Use regular expressions for plate matching (#14727)

This commit is contained in:
Josh Hawkins
2024-11-01 18:43:21 -05:00
committed by Nicolas Mowen
parent 90916879b7
commit 1ab061effd
5 changed files with 26 additions and 25 deletions

View File

@@ -154,7 +154,7 @@ class Embeddings:
"detection.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/detection.onnx"
},
model_size="large",
model_type=ModelTypeEnum.alpr_detect,
model_type=ModelTypeEnum.lpr_detect,
requestor=self.requestor,
device="CPU",
)
@@ -166,7 +166,7 @@ class Embeddings:
"classification.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/classification.onnx"
},
model_size="large",
model_type=ModelTypeEnum.alpr_classify,
model_type=ModelTypeEnum.lpr_classify,
requestor=self.requestor,
device="CPU",
)
@@ -178,7 +178,7 @@ class Embeddings:
"recognition.onnx": "https://github.com/hawkeye217/paddleocr-onnx/raw/refs/heads/master/models/recognition.onnx"
},
model_size="large",
model_type=ModelTypeEnum.alpr_recognize,
model_type=ModelTypeEnum.lpr_recognize,
requestor=self.requestor,
device="CPU",
)

View File

@@ -38,9 +38,9 @@ class ModelTypeEnum(str, Enum):
face = "face"
vision = "vision"
text = "text"
alpr_detect = "alpr_detect"
alpr_classify = "alpr_classify"
alpr_recognize = "alpr_recognize"
lpr_detect = "lpr_detect"
lpr_classify = "lpr_classify"
lpr_recognize = "lpr_recognize"
class GenericONNXEmbedding:
@@ -142,11 +142,11 @@ class GenericONNXEmbedding:
self.feature_extractor = self._load_feature_extractor()
elif self.model_type == ModelTypeEnum.face:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.alpr_detect:
elif self.model_type == ModelTypeEnum.lpr_detect:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.alpr_classify:
elif self.model_type == ModelTypeEnum.lpr_classify:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.alpr_recognize:
elif self.model_type == ModelTypeEnum.lpr_recognize:
self.feature_extractor = []
self.runner = ONNXModelRunner(
@@ -223,17 +223,17 @@ class GenericONNXEmbedding:
frame = np.expand_dims(frame, axis=0)
return [{"input_2": frame}]
elif self.model_type == ModelTypeEnum.alpr_detect:
elif self.model_type == ModelTypeEnum.lpr_detect:
preprocessed = []
for x in raw_inputs:
preprocessed.append(x)
return [{"x": preprocessed[0]}]
elif self.model_type == ModelTypeEnum.alpr_classify:
elif self.model_type == ModelTypeEnum.lpr_classify:
processed = []
for img in raw_inputs:
processed.append({"x": img})
return processed
elif self.model_type == ModelTypeEnum.alpr_recognize:
elif self.model_type == ModelTypeEnum.lpr_recognize:
processed = []
for img in raw_inputs:
processed.append({"x": img})

View File

@@ -3,6 +3,7 @@
import base64
import logging
import os
import re
import threading
from multiprocessing.synchronize import Event as MpEvent
from pathlib import Path
@@ -23,7 +24,7 @@ from frigate.comms.events_updater import EventEndSubscriber, EventUpdateSubscrib
from frigate.comms.inter_process import InterProcessRequestor
from frigate.config import FrigateConfig
from frigate.const import CLIPS_DIR, FRIGATE_LOCALHOST, UPDATE_EVENT_DESCRIPTION
from frigate.embeddings.alpr.alpr import LicensePlateRecognition
from frigate.embeddings.lpr.lpr import LicensePlateRecognition
from frigate.events.types import EventTypeEnum
from frigate.genai import get_genai_client
from frigate.models import Event
@@ -683,13 +684,16 @@ class EmbeddingMaintainer(threading.Thread):
)
return
# Determine subLabel based on known plates
# Determine subLabel based on known plates, use regex matching
# Default to the detected plate, use label name if there's a match
sub_label = top_plate
for label, plates in self.lpr_config.known_plates.items():
if top_plate in plates:
sub_label = label
break
sub_label = next(
(
label
for label, plates in self.lpr_config.known_plates.items()
if any(re.match(f"^{plate}$", top_plate) for plate in plates)
),
top_plate,
)
# Send the result to the API
resp = requests.post(