Remove all AGPL licensed YOLO references from Frigate (#10717)

* Remove yolov8 support from Frigate

* Remove yolov8 from dev

* Remove builds

* Formatting and remove yolov5

* Fix lint

* remove models download

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
Blake Blackshear
2024-03-30 06:46:17 -04:00
committed by GitHub
parent 0223d6df60
commit 14235c42b9
16 changed files with 81 additions and 671 deletions

View File

@@ -131,44 +131,3 @@ class OvDetector(DetectionApi):
object_detected[6], object_detected[5], object_detected[:4]
)
return detections
elif self.ov_model_type == ModelTypeEnum.yolov8:
out_tensor = infer_request.get_output_tensor()
results = out_tensor.data[0]
output_data = np.transpose(results)
scores = np.max(output_data[:, 4:], axis=1)
if len(scores) == 0:
return np.zeros((20, 6), np.float32)
scores = np.expand_dims(scores, axis=1)
# add scores to the last column
dets = np.concatenate((output_data, scores), axis=1)
# filter out lines with scores below threshold
dets = dets[dets[:, -1] > 0.5, :]
# limit to top 20 scores, descending order
ordered = dets[dets[:, -1].argsort()[::-1]][:20]
detections = np.zeros((20, 6), np.float32)
for i, object_detected in enumerate(ordered):
detections[i] = self.process_yolo(
np.argmax(object_detected[4:-1]),
object_detected[-1],
object_detected[:4],
)
return detections
elif self.ov_model_type == ModelTypeEnum.yolov5:
out_tensor = infer_request.get_output_tensor()
output_data = out_tensor.data[0]
# filter out lines with scores below threshold
conf_mask = (output_data[:, 4] >= 0.5).squeeze()
output_data = output_data[conf_mask]
# limit to top 20 scores, descending order
ordered = output_data[output_data[:, 4].argsort()[::-1]][:20]
detections = np.zeros((20, 6), np.float32)
for i, object_detected in enumerate(ordered):
detections[i] = self.process_yolo(
np.argmax(object_detected[5:]),
object_detected[4],
object_detected[:4],
)
return detections