forked from Github/frigate
cleanup old code
This commit is contained in:
@@ -1,139 +0,0 @@
|
||||
import datetime
|
||||
import time
|
||||
import cv2
|
||||
import threading
|
||||
import copy
|
||||
# import prctl
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
|
||||
from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, cameras, prepped_frame_queue, fps):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = LABELS
|
||||
self.fps = fps
|
||||
self.avg_inference_speed = 10
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
|
||||
|
||||
class RegionRequester(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
with self.camera.frame_ready:
|
||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||
if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
|
||||
self.camera.frame_ready.wait()
|
||||
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
# grab the current tracked objects
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
self.camera.regions_in_process[frame_time] += len(tracked_objects)
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': index,
|
||||
'size': region['size'],
|
||||
'x_offset': region['x_offset'],
|
||||
'y_offset': region['y_offset']
|
||||
})
|
||||
|
||||
# request a region for tracked objects
|
||||
for tracked_object in tracked_objects:
|
||||
box = tracked_object['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
|
||||
|
||||
class RegionPrepper(threading.Thread):
|
||||
def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.frame_cache = frame_cache
|
||||
self.resize_request_queue = resize_request_queue
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
|
||||
resize_request = self.resize_request_queue.get()
|
||||
|
||||
# if the queue is over 100 items long, only prep dynamic regions
|
||||
if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
frame = self.frame_cache.get(resize_request['frame_time'], None)
|
||||
|
||||
if frame is None:
|
||||
print("RegionPrepper: frame_time not in frame_cache")
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[resize_request['frame_time']] -= 1
|
||||
if self.camera.regions_in_process[resize_request['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[resize_request['frame_time']]
|
||||
self.camera.skipped_region_tracker.update()
|
||||
continue
|
||||
|
||||
# make a copy of the region
|
||||
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
# TODO: use Pillow-SIMD?
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
self.prepped_frame_queue.put(resize_request)
|
||||
Reference in New Issue
Block a user