Initial support for rockchip boards (#8382)

* initial support for rockchip boards

* Apply suggestions from code review

apply requested changes

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* requested changes

* rewrite dockerfile

* adjust targets

* Update .github/workflows/ci.yml

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* add information to docs

* Update docs/docs/configuration/object_detectors.md

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>

* format rknn.py

* apply changes from isort and ruff

---------

Co-authored-by: MarcA711 <>
Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
Marc Altmann
2023-11-02 13:55:24 +01:00
committed by GitHub
parent a6279a0337
commit 090294e89b
11 changed files with 242 additions and 1 deletions

View File

@@ -5,7 +5,7 @@ title: Object Detectors
# Officially Supported Detectors
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, and `rknn`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
## CPU Detector (not recommended)
@@ -291,3 +291,38 @@ To verify that the integration is working correctly, start Frigate and observe t
# Community Supported Detectors
## Rockchip RKNN-Toolkit-Lite2
This detector is only available if one of the following Rockchip SoCs is used:
- RK3566/RK3568
- RK3588/RK3588S
- RV1103/RV1106
- RK3562
These SoCs come with a NPU that will highly speed up detection.
### Setup
RKNN support is provided using the `-rk` suffix for the docker image. Moreover, privileged mode must be enabled by adding the `--privileged` flag to your docker run command or `privileged: true` to your `docker-compose.yml` file.
### Configuration
This `config.yml` shows all relevant options to configure the detector and explains them. All values shown are the default values (except for one). Lines that are required at least to use the detector are labeled as required, all other lines are optional.
```yaml
detectors: # required
rknn: # required
type: rknn # required
model: # required
# path to .rknn model file
path: /models/yolov8n-320x320.rknn
# width and height of detection frames
width: 320
height: 320
# pixel format of detection frame
# default value is rgb but yolov models usually use bgr format
input_pixel_format: bgr # required
# shape of detection frame
input_tensor: nhwc
```

View File

@@ -95,6 +95,16 @@ Frigate supports all Jetson boards, from the inexpensive Jetson Nano to the powe
Inference speed will vary depending on the YOLO model, jetson platform and jetson nvpmodel (GPU/DLA/EMC clock speed). It is typically 20-40 ms for most models. The DLA is more efficient than the GPU, but not faster, so using the DLA will reduce power consumption but will slightly increase inference time.
#### Rockchip SoC
Frigate supports SBCs with the following Rockchip SoCs:
- RK3566/RK3568
- RK3588/RK3588S
- RV1103/RV1106
- RK3562
Using the yolov8n model and an Orange Pi 5 Plus with RK3588 SoC inference speeds vary between 25-40 ms.
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.

View File

@@ -95,6 +95,7 @@ The following community supported builds are available:
`ghcr.io/blakeblackshear/frigate:stable-tensorrt-jp5` - Frigate build optimized for nvidia Jetson devices running Jetpack 5
`ghcr.io/blakeblackshear/frigate:stable-tensorrt-jp4` - Frigate build optimized for nvidia Jetson devices running Jetpack 4.6
`ghcr.io/blakeblackshear/frigate:stable-rk` - Frigate build for SBCs with Rockchip SoC
:::