forked from Github/frigate
YOLOv5 & YOLOv8 support for the OpenVINO Detector (#5523)
* Initial commit that adds YOLOv5 and YOLOv8 support for OpenVINO detector * Fixed double inference bug with YOLOv5 and YOLOv8 * Modified documentation to mention YOLOv5 and YOLOv8 * Changes to pass lint checks * Change minimum threshold to improve model performance * Fix link * Clean up YOLO post-processing --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
@@ -26,6 +26,8 @@ class InputTensorEnum(str, Enum):
|
||||
class ModelTypeEnum(str, Enum):
|
||||
ssd = "ssd"
|
||||
yolox = "yolox"
|
||||
yolov5 = "yolov5"
|
||||
yolov8 = "yolov8"
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
|
||||
@@ -67,6 +67,18 @@ class OvDetector(DetectionApi):
|
||||
self.grids = np.concatenate(grids, 1)
|
||||
self.expanded_strides = np.concatenate(expanded_strides, 1)
|
||||
|
||||
## Takes in class ID, confidence score, and array of [x, y, w, h] that describes detection position,
|
||||
## returns an array that's easily passable back to Frigate.
|
||||
def process_yolo(self, class_id, conf, pos):
|
||||
return [
|
||||
class_id, # class ID
|
||||
conf, # confidence score
|
||||
(pos[1] - (pos[3] / 2)) / self.h, # y_min
|
||||
(pos[0] - (pos[2] / 2)) / self.w, # x_min
|
||||
(pos[1] + (pos[3] / 2)) / self.h, # y_max
|
||||
(pos[0] + (pos[2] / 2)) / self.w, # x_max
|
||||
]
|
||||
|
||||
def detect_raw(self, tensor_input):
|
||||
infer_request = self.interpreter.create_infer_request()
|
||||
infer_request.infer([tensor_input])
|
||||
@@ -113,23 +125,50 @@ class OvDetector(DetectionApi):
|
||||
ordered = dets[dets[:, 5].argsort()[::-1]][:20]
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
i = 0
|
||||
|
||||
for object_detected in ordered:
|
||||
if i < 20:
|
||||
detections[i] = [
|
||||
object_detected[6], # Label ID
|
||||
object_detected[5], # Confidence
|
||||
(object_detected[1] - (object_detected[3] / 2))
|
||||
/ self.h, # y_min
|
||||
(object_detected[0] - (object_detected[2] / 2))
|
||||
/ self.w, # x_min
|
||||
(object_detected[1] + (object_detected[3] / 2))
|
||||
/ self.h, # y_max
|
||||
(object_detected[0] + (object_detected[2] / 2))
|
||||
/ self.w, # x_max
|
||||
]
|
||||
i += 1
|
||||
else:
|
||||
break
|
||||
for i, object_detected in enumerate(ordered):
|
||||
detections[i] = self.process_yolo(
|
||||
object_detected[6], object_detected[5], object_detected[:4]
|
||||
)
|
||||
return detections
|
||||
elif self.ov_model_type == ModelTypeEnum.yolov8:
|
||||
out_tensor = infer_request.get_output_tensor()
|
||||
results = out_tensor.data[0]
|
||||
output_data = np.transpose(results)
|
||||
scores = np.max(output_data[:, 4:], axis=1)
|
||||
if len(scores) == 0:
|
||||
return np.zeros((20, 6), np.float32)
|
||||
scores = np.expand_dims(scores, axis=1)
|
||||
# add scores to the last column
|
||||
dets = np.concatenate((output_data, scores), axis=1)
|
||||
# filter out lines with scores below threshold
|
||||
dets = dets[dets[:, -1] > 0.5, :]
|
||||
# limit to top 20 scores, descending order
|
||||
ordered = dets[dets[:, -1].argsort()[::-1]][:20]
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, object_detected in enumerate(ordered):
|
||||
detections[i] = self.process_yolo(
|
||||
np.argmax(object_detected[4:-1]),
|
||||
object_detected[-1],
|
||||
object_detected[:4],
|
||||
)
|
||||
return detections
|
||||
elif self.ov_model_type == ModelTypeEnum.yolov5:
|
||||
out_tensor = infer_request.get_output_tensor()
|
||||
output_data = out_tensor.data[0]
|
||||
# filter out lines with scores below threshold
|
||||
conf_mask = (output_data[:, 4] >= 0.5).squeeze()
|
||||
output_data = output_data[conf_mask]
|
||||
# limit to top 20 scores, descending order
|
||||
ordered = output_data[output_data[:, 4].argsort()[::-1]][:20]
|
||||
|
||||
detections = np.zeros((20, 6), np.float32)
|
||||
|
||||
for i, object_detected in enumerate(ordered):
|
||||
detections[i] = self.process_yolo(
|
||||
np.argmax(object_detected[5:]),
|
||||
object_detected[4],
|
||||
object_detected[:4],
|
||||
)
|
||||
return detections
|
||||
|
||||
Reference in New Issue
Block a user