forked from Github/frigate
switch to a thread for object detection
This commit is contained in:
@@ -21,89 +21,40 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def detect_objects(prepped_frame_array, prepped_frame_time,
|
||||
prepped_frame_ready, prepped_frame_grabbed,
|
||||
prepped_frame_box, object_queue, debug):
|
||||
prepped_frame_np = tonumpyarray(prepped_frame_array)
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
engine = DetectionEngine(PATH_TO_CKPT)
|
||||
labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
frame_time = 0.0
|
||||
region_box = [0,0,0]
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
prepped_frame_ready.wait()
|
||||
|
||||
prepped_frame_copy = prepped_frame_np.copy()
|
||||
frame_time = prepped_frame_time.value
|
||||
region_box[:] = prepped_frame_box
|
||||
|
||||
prepped_frame_grabbed.set()
|
||||
# print("Grabbed " + str(region_box[1]) + "," + str(region_box[2]))
|
||||
|
||||
# Actual detection.
|
||||
objects = engine.DetectWithInputTensor(prepped_frame_copy, threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
object_queue.put({
|
||||
'frame_time': frame_time,
|
||||
'name': str(labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * region_box[0]) + region_box[1]),
|
||||
'ymin': int((box[1] * region_box[0]) + region_box[2]),
|
||||
'xmax': int((box[2] * region_box[0]) + region_box[1]),
|
||||
'ymax': int((box[3] * region_box[0]) + region_box[2])
|
||||
})
|
||||
# else:
|
||||
# object_queue.put({
|
||||
# 'frame_time': frame_time,
|
||||
# 'name': 'dummy',
|
||||
# 'score': 0.99,
|
||||
# 'xmin': int(0 + region_box[1]),
|
||||
# 'ymin': int(0 + region_box[2]),
|
||||
# 'xmax': int(10 + region_box[1]),
|
||||
# 'ymax': int(10 + region_box[2])
|
||||
# })
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, prepped_frame_array,
|
||||
prepped_frame_time,
|
||||
prepped_frame_ready,
|
||||
prepped_frame_grabbed,
|
||||
prepped_frame_box,
|
||||
prepped_frame_queue):
|
||||
def __init__(self, prepped_frame_queue, object_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.prepped_frame_array = prepped_frame_array
|
||||
self.prepped_frame_time = prepped_frame_time
|
||||
self.prepped_frame_ready = prepped_frame_ready
|
||||
self.prepped_frame_grabbed = prepped_frame_grabbed
|
||||
self.prepped_frame_box = prepped_frame_box
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
self.object_queue = object_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
self.labels = ReadLabelFile(PATH_TO_LABELS)
|
||||
|
||||
def run(self):
|
||||
prepped_frame_np = tonumpyarray(self.prepped_frame_array)
|
||||
# process queue...
|
||||
while True:
|
||||
frame = self.prepped_frame_queue.get()
|
||||
# print(self.prepped_frame_queue.qsize())
|
||||
prepped_frame_np[:] = frame['frame']
|
||||
self.prepped_frame_time.value = frame['frame_time']
|
||||
self.prepped_frame_box[0] = frame['region_size']
|
||||
self.prepped_frame_box[1] = frame['region_x_offset']
|
||||
self.prepped_frame_box[2] = frame['region_y_offset']
|
||||
# print("Passed " + str(frame['region_x_offset']) + "," + str(frame['region_x_offset']))
|
||||
self.prepped_frame_ready.set()
|
||||
self.prepped_frame_grabbed.wait()
|
||||
self.prepped_frame_grabbed.clear()
|
||||
self.prepped_frame_ready.clear()
|
||||
# Actual detection.
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
self.object_queue.put({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
@@ -156,5 +107,5 @@ class FramePrepper(threading.Thread):
|
||||
'region_x_offset': self.region_x_offset,
|
||||
'region_y_offset': self.region_y_offset
|
||||
})
|
||||
# else:
|
||||
# print("queue full. moving on")
|
||||
else:
|
||||
print("queue full. moving on")
|
||||
|
||||
Reference in New Issue
Block a user