forked from Github/frigate
WIP: convert to camera class
This commit is contained in:
@@ -22,11 +22,11 @@ def ReadLabelFile(file_path):
|
||||
return ret
|
||||
|
||||
class PreppedQueueProcessor(threading.Thread):
|
||||
def __init__(self, prepped_frame_queue, object_queue):
|
||||
def __init__(self, cameras, prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.cameras = cameras
|
||||
self.prepped_frame_queue = prepped_frame_queue
|
||||
self.object_queue = object_queue
|
||||
|
||||
# Load the edgetpu engine and labels
|
||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
||||
@@ -41,30 +41,32 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
# print(engine.get_inference_time())
|
||||
print(self.engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
if objects:
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
self.object_queue.put({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
box = obj.bounding_box.flatten().tolist()
|
||||
parsed_objects.append({
|
||||
'frame_time': frame['frame_time'],
|
||||
'name': str(self.labels[obj.label_id]),
|
||||
'score': float(obj.score),
|
||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
||||
})
|
||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
||||
|
||||
|
||||
# should this be a region class?
|
||||
class FramePrepper(threading.Thread):
|
||||
def __init__(self, shared_frame, frame_time, frame_ready,
|
||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
||||
frame_lock,
|
||||
region_size, region_x_offset, region_y_offset,
|
||||
prepped_frame_queue):
|
||||
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_name = camera_name
|
||||
self.shared_frame = shared_frame
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
@@ -101,6 +103,7 @@ class FramePrepper(threading.Thread):
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
self.prepped_frame_queue.put({
|
||||
'camera_name': self.camera_name,
|
||||
'frame_time': frame_time,
|
||||
'frame': frame_expanded.flatten().copy(),
|
||||
'region_size': self.region_size,
|
||||
|
||||
Reference in New Issue
Block a user