WIP: convert to camera class

This commit is contained in:
blakeblackshear
2019-03-29 20:49:27 -05:00
parent 8774e537dc
commit 0279121d77
4 changed files with 223 additions and 206 deletions

View File

@@ -22,11 +22,11 @@ def ReadLabelFile(file_path):
return ret
class PreppedQueueProcessor(threading.Thread):
def __init__(self, prepped_frame_queue, object_queue):
def __init__(self, cameras, prepped_frame_queue):
threading.Thread.__init__(self)
self.cameras = cameras
self.prepped_frame_queue = prepped_frame_queue
self.object_queue = object_queue
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
@@ -41,30 +41,32 @@ class PreppedQueueProcessor(threading.Thread):
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
# time.sleep(0.1)
# objects = []
# print(engine.get_inference_time())
print(self.engine.get_inference_time())
# put detected objects in the queue
if objects:
for obj in objects:
box = obj.bounding_box.flatten().tolist()
self.object_queue.put({
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
})
parsed_objects = []
for obj in objects:
box = obj.bounding_box.flatten().tolist()
parsed_objects.append({
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready,
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset,
prepped_frame_queue):
threading.Thread.__init__(self)
self.camera_name = camera_name
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
@@ -101,6 +103,7 @@ class FramePrepper(threading.Thread):
# add the frame to the queue
if not self.prepped_frame_queue.full():
self.prepped_frame_queue.put({
'camera_name': self.camera_name,
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,

View File

@@ -4,53 +4,17 @@ import threading
import cv2
from object_detection.utils import visualization_utils as vis_util
class ObjectParser(threading.Thread):
def __init__(self, object_queue, objects_parsed, detected_objects, regions):
def __init__(self, cameras, object_queue, detected_objects, regions):
threading.Thread.__init__(self)
self._object_queue = object_queue
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
self.cameras = cameras
self.object_queue = object_queue
self.regions = regions
def run(self):
# frame_times = {}
while True:
obj = self._object_queue.get()
# filter out persons
# [obj['score'] for obj in detected_objects if obj['name'] == 'person']
if obj['name'] == 'person':
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
# find the matching region
region = None
for r in self.regions:
if (
obj['xmin'] >= r['x_offset'] and
obj['ymin'] >= r['y_offset'] and
obj['xmax'] <= r['x_offset']+r['size'] and
obj['ymax'] <= r['y_offset']+r['size']
):
region = r
break
# if the min person area is larger than the
# detected person, don't add it to detected objects
if region and region['min_person_area'] > person_area:
continue
# frame_time = obj['frame_time']
# if frame_time in frame_times:
# if frame_times[frame_time] == 7:
# del frame_times[frame_time]
# else:
# frame_times[frame_time] += 1
# else:
# frame_times[frame_time] = 1
# print(frame_times)
self._detected_objects.append(obj)
# notify that objects were parsed
with self._objects_parsed:
self._objects_parsed.notify_all()
obj = self.object_queue.get()
self.cameras[obj['camera_name']].add_object(obj)
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):

View File

@@ -1,8 +1,14 @@
import os
import time
import datetime
import cv2
import threading
import ctypes
import multiprocessing as mp
from . util import tonumpyarray
from . object_detection import FramePrepper
from . objects import ObjectCleaner, ObjectParser, BestPersonFrame
from . mqtt import MqttObjectPublisher
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
@@ -85,3 +91,130 @@ class FrameTracker(threading.Thread):
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
def get_frame_shape(rtsp_url):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(rtsp_url)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_rtsp_url(rtsp_config):
if (rtsp_config['password'].startswith('$')):
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
rtsp_config['path'])
class Camera:
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.rtsp_url)
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# compute the flattened array length from the shape of the frame
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
# create shared array for storing the full frame image data
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
self.shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
# shape current frame so it can be treated as a numpy image
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
# create the process to capture frames from the RTSP stream and store in a shared array
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
self.capture_process.daemon = True
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for region in self.config['regions']:
self.detection_prep_threads.append(FramePrepper(
self.name,
self.shared_frame_np,
self.shared_frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
# start a thread to store the highest scoring recent person frame
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_person_frame.start()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
mqtt_publisher.start()
def start(self):
self.capture_process.start()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
def join(self):
self.capture_process.join()
def get_capture_pid(self):
return self.capture_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
if obj['name'] == 'person':
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
# find the matching region
region = None
for r in self.regions:
if (
obj['xmin'] >= r['x_offset'] and
obj['ymin'] >= r['y_offset'] and
obj['xmax'] <= r['x_offset']+r['size'] and
obj['ymax'] <= r['y_offset']+r['size']
):
region = r
break
# if the min person area is larger than the
# detected person, don't add it to detected objects
if region and region['min_person_area'] > person_area:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best_person(self):
return self.best_person_frame.best_frame